| 1 | 1.0 | ACC | URACY OF THE 3T3 AND NHK NRU TEST METHODS FOR | | |----------|-----|-----|--|------| | 2 | | TOX | ICITY CATEGORY PREDICTION | 1-2 | | 3 | | | | | | 4 | | 1.1 | Prediction of Toxicity Category by the 3T3 and NHK NRU | | | 5 | | | Test Methods Using the RC Millimole Regression | 1-2 | | 6 | | | | | | 7 | | 1.2 | Prediction of Toxicity Category by the 3T3 and NHK NRU | | | 8 | | | Test Methods Using the RC Rat-Only Weight Regression | 1-5 | | 9 | | | | | | 10 | | 1.3 | Prediction of Toxicity Category by the 3T3 and NHK NRU | | | 11 | | | Test Methods Using the RC Rat-Only Weight Regression Excluding | | | 12
13 | | | Substances with Specific Mechanisms of Toxicity | 1-8 | | 13 | | | | | | 14 | | 1.4 | Summary of the Regressions Evaluated | 1-11 | | 15 | | | | | | 16 | | 1.5 | Alternate Accuracy Analysis for the RC Millimole Regression | 1-12 | | 17 | | | | | | 18 | | | | | 1.0 | 19 | CATEGORY | |----|---| | 20 | | | 21 | This analysis of accuracy for the prediction of GHS acute oral toxicity categories (UN 2005) | | 22 | predicted by the 3T3 and NHK NRU test methods was performed using all the available IC_{50} | | 23 | data: 70 substances for the 3T3 NRU and 71 substances for the NHK NRU. Of the 72 | | 24 | substances tested in the study, carbon tetrachloride and methanol were excluded from the | | 25 | 3T3 NRU analysis and methanol was excluded from the NHK NRU analysis because no | | 26 | laboratory attained sufficient toxicity in any test for the calculation of an IC ₅₀ . | | 27 | | | 28 | 1.1 Prediction of Toxicity Category by the 3T3 and NHK NRU Test Methods | | 29 | Using the RC Millimole Regression | | 30 | | | 31 | Table 1-1 shows the concordance of the observed and predicted GHS acute oral toxicity | | 32 | categories (UN 2005) for each in vitro cytotoxicity test method using the geometric mean | | 33 | IC_{50} values (of the three laboratories) in the RC millimole regression, log LD_{50} (mmol/kg) = | | 34 | $0.435 \text{ x} \log \text{IC}_{50} \text{ (mM)} + 0.625$. Accuracy is the agreement of the category predictions with | | 35 | those based on the initial rodent LD_{50} values used for selected substances for testing (in | | 36 | Table 3-2 of the BRD). Substances for which the in vitro toxicity category prediction does | | 37 | not match the in vivo determined toxicity category are considered discordant substances for | | 38 | the GHS toxicity category predictions. | | 39 | | | 40 | For the 3T3 NRU test method, the toxicity category was underpredicted for 29 (56%) and | | 41 | overpredicted for 22 (43%) of the 51 discordant substances. For the NHK NRU test method, | | 42 | toxicity was underpredicted for 28 (54%) and overpredicted for 24 (46%) of the 52 | | 43 | discordant substances. The fact that there were more substances that were underpredicted for | | 44 | toxicity is consistent with the RC substances chosen for testing. Figure 3-1 of the BRD | | 45 | shows that most of the selected RC substances are below the RC millimole regression line. | | 46 | Thus, the RC is expected to predict a higher LD ₅₀ (i.e., lower toxicity). | ACCURACY FOR THE PREDICTION OF GHS ACUTE ORAL TOXICITY ## Table 1-1 Prediction of GHS Toxicity Category¹ by the 3T3 and NHK NRU Test Methods and the RC Millimole Regression | Initial Rodent | | 3T3 | NRU-Predi | cted Toxicity |
Category | | - I | | Toxicity | Toxicity | |--|----------------------------|--------------------------------------|----------------------------------|------------------------------------|---------------------------------|----------------------------|---|-------------------------------------|-------------------------------------|--------------------------------| | $\mathrm{LD_{50}}^2$ | < 5 | 5 – 50 | 50 – 300 | 300 – 2000 | 2000 - 5000 | > 5000 | Total | Accuracy | Overpredicted | Underpredicted | | < 5 | 0 | 3 | 1 | 8 | 0 | 0 | 12 | 0% | 0% | 100% | | 5 –50 | 0 | 2 | 5 | 4 | 1 | 0 | 12 | 17% | 0% | 83% | | 50 – 300 | 0 | 0 | 5 | 7 | 0 | 0 | 12 | 42% | 0% | 58% | | 300 – 2000 | 0 | 0 | 1 | 11 | 0 | 0 | 12 | 92% | 8% | 0% | | 2000 - 5000 | 0 | 0 | 0 | 11 | 0 | 0 | 11 ³ | 0% | 100% | 0% | | > 5000 | 0 | 0 | 0 | 7 | 3 | 1 | 11 ⁴ | 9% | 91% | 0% | | Total | 0 | 5 | 12 | 48 | 4 | 1 | 70 | 27% | 31% | 41% | | Predictivity | 0% | 40% | 42% | 23% | 0% | 100% | | | | | | Category
Underpredicted | 0% | 0% | 8% | 38% | 75% | 0% | | | | | | Category
Overpredicted | 0% | 60% | 50% | 40% | 25% | 0% | | | | | | Initial Rodent | | NHK | NRU-Pred | licted Toxicity | Total | tal Accuracy | Toxicity | Toxicity | | | | LD_{50} | < 5 | 5 – 50 | 50 200 | 200 2000 | | | i i otai | Accuracy | A 1 | Underpredicted | | | - 3 | 5 – 50 | 50 - 300 | 300 – 2000 | 2000 - 5000 | > 5000 | | v | Overpredicted | Onder predicted | | < 5 | 0 | 1 | 3 | 7 | 2000 – 5000
1 | > 5000 | 12 | 0% | 0% | 100% | | < 5
5 – 50 | | | | | | | | , | | - | | | 0 | 1 | 3 | 7 | 1 | 0 | 12 | 0% | 0% | 100% | | 5 – 50 | 0 | 1 4 | 3
7 | 7 | 1 0 | 0 | 12 | 0% | 0% | 100% | | 5 – 50
50 – 300 | 0
0
0 | 1
4
1 | 3
7
4 | 7
1
7 | 1
0
0 | 0 0 0 | 12
12
12 | 0%
33%
33% | 0%
0%
8% | 100%
67%
58% | | 5 - 50
50 - 300
300 - 2000 | 0
0
0
0 | 1
4
1
0 | 3
7
4
1 | 7
1
7
10 | 1
0
0 | 0
0
0
0 | 12
12
12
12 | 0%
33%
33%
83% | 0%
0%
8%
8% | 100%
67%
58%
8% | | 5 - 50
50 - 300
300 - 2000
2000 - 5000 | 0
0
0
0 | 1
4
1
0 | 3
7
4
1
0 | 7
1
7
10
10 | 1
0
0
1
1 | 0
0
0
0 | 12
12
12
12
12
11 ³ | 0%
33%
33%
83%
9% | 0%
0%
8%
8%
91% | 100%
67%
58%
8%
0% | | 5 - 50
50 - 300
300 - 2000
2000 - 5000
> 5000 | 0
0
0
0
0 | 1
4
1
0
0 | 3
7
4
1
0 | 7
1
7
10
10
6 | 1
0
0
1
1
5 | 0
0
0
0
0 | 12
12
12
12
12
11 ³
12 | 0%
33%
33%
83%
9%
0% | 0%
0%
8%
8%
91%
100% | 100%
67%
58%
8%
0% | | 5 - 50
50 - 300
300 - 2000
2000 - 5000
> 5000
Total | 0
0
0
0
0
0 | 1
4
1
0
0
0
0
6 | 3
7
4
1
0
1
16 | 7
1
7
10
10
6
41 | 1
0
0
1
1
5
8 | 0
0
0
0
0
0 | 12
12
12
12
12
11 ³
12 | 0%
33%
33%
83%
9%
0% | 0%
0%
8%
8%
91%
100% | 100%
67%
58%
8%
0% | - 49 ¹GHS-Globally Harmonized System of Classification and Labelling of Chemicals with LD₅₀ in mg/kg (UN 2005). The RC - 50 millimole regression is $\log LD_{50}$ (mmol/kg) = $\log IC_{50}$ (mM) X 0.435 + 0.625. Numbers in table represent number of substances. - ²Initial rodent LD₅₀ values from Table 3-2 of the BRD. - ³Carbon tetrachloride excluded because no laboratory attained sufficient toxicity for the calculation of an IC₅₀. - 51 52 53 ⁴Methanol excluded because no laboratory attained sufficient toxicity for the calculation of an IC₅₀. 1.2 Prediction of Toxicity Category by the 3T3 and NHK NRU Test Methods Using 55 the RC Rat-Only Weight Regression 56 57 **Table 1-2** shows the concordance of the observed and predicted GHS acute oral toxicity 58 categories for each test method using the geometric mean IC₅₀ values (of the three laboratories) and the RC rat-only weight regression from Table 6-2 of the BRD. The 59 60 regression formula for the RC rat-only weight regression was $\log LD_{50}$ (mg/kg) = $\log IC_{50}$ 61 (μ g/mL) x 0.372 + 2.024. Accuracy is the agreement of the *in vitro* NRU cytotoxicity GHS toxicity category predictions with those based on the reference rat oral LD₅₀ values from 62 Table 4-2 of the BRD. 63 64 65 The two *in vitro* NRU cytotoxicity test methods over- and under-predicted the GHS toxicity category for a similar number of substances, compared with the GHS toxicity categories for 66 67 the reference LD₅₀ values in Table 4-2 of the BRD. For the 3T3 NRU test method, the GHS 68 toxicity category of 23 (48%) of 48 discordant substances was overpredicted and the GHS 69 toxicity category of 25 (52%) substances was underpredicted. For the NHK NRU test 70 method, the GHS toxicity category of 26 (53%) of 49 discordant substances was 71 overpredicted and the toxicity of 23 (47%) discordant substances was underpredicted. 72 74 75 76 ## Table 1-2 Prediction of GHS Toxicity Category¹ by the 3T3 and NHK NRU Test Methods and the RC Rat-Only Weight Regression | | | | • | | | | | | | | |---|-----|--------|------------|------------------|-------------|---------------|-----------------|---------------|----------------|----------------| | Reference | | 37 | Γ3 NRU Pre | dicted Toxicity | Category | | | | Toxicity | Toxicity | | Rodent LD ₅₀ ² | < 5 | 5 – 50 | 50 – 300 | 300-2000 | 2000-5000 | > 5000 | Total | Accuracy | Overpredicted | Underpredicted | | < 5 | 0 | 0 | 2 | 5 | 0 | 0 | 7 | 0% | 0% | 100% | | 5 – 50 | 0 | 2 | 5 | 5 | 0 | 0 | 12 | 17% | 0% | 83% | | 50 - 300 | 0 | 0 | 4 | 8 | 0 | 0 | 12 | 33% | 0% | 67% | | 300 - 2000 | 0 | 1 | 3 | 12 | 0 | 0 | 16 | 75% | 25% | 0% | | 2000 - 5000 | 0 | 0 | 0 | 6 | 4 | 0 | 10^{3} | 40% | 60% | 0% | | > 5000 | 0 | 0 | 0 | 6 | 7 | 0 | 13 ⁴ | 0% | 100% | 0% | | Total | 0 | 3 | 14 | 42 | 11 | 0 | 70 | 31% | 33% | 36% | | Predictivity | 0% | 67% | 29% | 29% | 36% | 0% | | | | | | Category
Underpredicted | 0% | 0% | 50% | 43% | 0% | 0% | | | | | | Category
Overpredicted | 0% | 33% | 21% | 29% | 64% | 0% | | | | | | Reference | | NE | IK NRU Pro | edicted Toxicity | y Category | | | | Toxicity | Toxicity | | Reference
Rodent LD ₅₀ ² | < 5 | 5 – 50 | 50 – 300 | 300 – 2000 | 2000 – 5000 | > 5000 | Total Accuracy | Overpredicted | Underpredicted | | | < 5 | 0 | 1 | 2 | 4 | 0 | 0 | 7 | 0% | 0% | 100% | | 5 – 50 | 0 | 2 | 5 | 5 | 0 | 0 | 12 | 17% | 0% | 83% | | 50 – 300 | 0 | 1 | 5 | 6 | 0 | 0 | 12 | 42% | 8% | 50% | | 300 - 2000 | 0 | 1 | 2 | 13 | 0 | 0 | 16 | 81% | 19% | 0% | | 2000 - 5000 | 0 | 0 | 0 | 9 | 1 | 0 | 10^{3} | 10% | 90% | 0% | | > 5000 | 0 | 0 | 0 | 7 | 6 | 1 | 14 | 7% | 93% | 0% | | | | | | , | | | | | | | | Total | 0 | 5 | 14 | 44 | 7 | 1 | 71 | 31% | 37% | 32% | | | 0 | | | , | | 1 0% | 71 | 31% | | 32% | | Total | | 5 | 14 | 44 | 7 | 1
0%
0% | 71 | 31% | | 32% | ¹Globally Harmonized System of Classification and Labelling of Chemicals with LD₅₀ in mg/kg (UN 2005). The RC rat-only weight regression is $\log LD_{50}$ (mg/kg) = $\log IC_{50}$ (µg/mL) X 0.372 + 2.024. - 77 78 79 80 - 2 Reference rodent LD₅₀ values from Table 4-2 of the BRD. 5 Carbon tetrachloride excluded because no laboratory attained sufficient toxicity for the calculation of an IC₅₀. - ⁶Methanol excluded because no laboratory attained sufficient toxicity for the calculation of an IC₅₀, | 81 | 1.3 Prediction of Toxicity Category by the 3T3 and NHK NRU Test Methods with | |-----|--| | 82 | the RC Rat-Only Weight Regression Excluding Substances with Specific | | 83 | Mechanisms of Toxicity | | 84 | | | 85 | Table 1-3 shows the concordance of the observed and predicted GHS acute oral toxicity | | 86 | categories for each in vitro NRU test method using the geometric mean IC50 values (of the | | 87 | three laboratories) and the RC rat-only weight regression excluding substances with specific | | 88 | mechanisms of action (see Table 6-2). The formula for this regression was log LD_{50} (mg/kg) | | 89 | = log IC ₅₀ (μ g/mL) x 0.357 + 2.194. Accuracy is the agreement of the <i>in vitro</i> predicted | | 90 | GHS toxicity categories with those based on the reference rat oral LD ₅₀ values from Table 4- | | 91 | 2 of the BRD. | | 92 | | | 93 | The NHK NRU test method had four more discordant substances than the corresponding | | 94 | assay using $3T3$ cells when the IC_{50} results were applied to the RC rat-only weight regression | | 95 | excluding substances with specific mechanisms of toxicity. For the 3T3 NRU test method, | | 96 | the GHS toxicity category of 16 (38%) of 42 discordant substances was overpredicted while | | 97 | the toxicity of 26 (62%) of 42 discordant substances was underpredicted compared with the | | 98 | in vivo GHS toxicity categories for the reference LD ₅₀ values in Table 4-2 of the BRD. For | | 99 | the NHK NRU test method, the toxicity of 21 (46%) of 46 discordant substances was | | 100 | overpredicted while the toxicity of 25 (53%) of 46 discordant substances was underpredicted. | | 101 | | | 102 | | | 103 | | | 104 | | 106 Table 1-3 Prediction of GHS Toxicity Categories¹ by the 3T3 and NHK NRU with the RC Rat-Only Weight Regression Excluding Substances with Specific Mechanisms of Toxicity | | | 20 | C2 NIDII D | 1°.4.1 T. 1.24 | C -1 | | | | | T. ••• | |---|----------------------------|---|--|---|--|---------------------------------|--|---------------------------------------|---------------------------|---------------------------------------| | Reference | | 31 | 3 NKU Pre | dicted Toxicity | Category | | Total | Accuracy | Toxicity | Toxicity
Underpredicte | | Rodent LD ₅₀ ² | < 5 | 5 – 50 | 50 – 300 | 300-2000 | 2000-5000 | > 5000 | Total | Accuracy | Overpredicted | d | | < 5 | 0 | 0 | 2 | 5 | 0 | 0 | 7 | 0% | 0% | 100% | | 5 – 50 | 0 | 2 | 4 | 6 | 0 | 0 | 12 | 17% | 0% | 83% | | 50 - 300 | 0 | 0 | 3 | 9 | 0 | 0 | 12 | 25% | 0% | 75% | | 300 - 2000 | 0 | 1 | 1 | 14 | 0 | 0 | 16 | 88% | 13% | 0% | | 2000 - 5000 | 0 | 0 | 0 | 4 | 6 | 0 | 10^{3} | 60% | 40% | 0% | | > 5000 | 0 | 0 | 0 | 6 | 4 | 3 | 13 ⁴ | 23% | 77% | 0% | | Total | 0 | 3 | 10 | 44 | 10 | 3 | 70 | 40% | 23% | 37% | | Predictivity | 0% | 67% | 30% | 32% | 60% | 0% | | | | | | Category
Underpredicted | 0% | 0% | 60% | 45% | 0% | 0% | | | | | | Category
Overpredicted | 0% | 33% | 10% | 23% | 40% | 0% | | | | | | Deference | | NE | IK NRII Pre | edicted Toxicity | v Category | | | Tovioity | Toxicity | | | Reference
Rodent LD ₅₀ ² | | 111 | | dicted I oxicit, | y Category | | | | Tovicity | TOXICITY | | | < 5 | 5 – 50 | 50 – 300 | 300 – 2000 | 2000 – 5000 | > 5000 | Total | Accuracy | Toxicity
Overpredicted | Underpredicte
d | | | < 5 | | | | | > 5000 | Total | Accuracy 0% | | Underpredicte | | Rodent LD ₅₀ ² | | 5 – 50 | 50 – 300 | 300 – 2000 | 2000 – 5000 | | | · | Overpredicted | Underpredicte
d | | Rodent LD ₅₀ ² < 5 | 0 | 5-50 | 50 – 300 | 300 – 2000 5 | 2000 – 5000 | 0 | 7 | 0% | Overpredicted 0% | Underpredicte
d
100% | | <pre></pre> | 0 | 5-50 | 50 – 300
2
5 | 300 – 2000
5
5 | 2000 - 5000
0 | 0 | 7 12 | 0% | Overpredicted 0% 0% | Underpredicte d 100% 83% | | <pre></pre> | 0 0 | 5-50 | 50 – 300
2
5 | 300 – 2000
5
5
7 | 2000 - 5000
0 | 0 0 | 7
12
12 | 0%
17%
33% | 0%
0%
0%
8% | Underpredicte d 100% 83% 58% | | <pre>Rodent LD₅₀²</pre> | 0
0
0 | 5-50
0
2
1 | 50 – 300
2
5
4 | 300 – 2000
5
5
7
13 | 2000 - 5000
0
0
0
1 | 0
0
0 | 7
12
12
16 | 0%
17%
33%
81% | 0% 0% 8% 13% | Underpredicte d 100% 83% 58% 6% | | <pre></pre> | 0
0
0
0 | 5-50
0
2
1
1
0 | 50 - 300
2
5
4
1
0 | 300 – 2000
5
5
7
13
6 | 2000 - 5000
0
0
0
1
4 | 0
0
0
0 | 7
12
12
16
10 ³ | 0%
17%
33%
81%
40% | 0% 0% 8% 13% 60% | Underpredicte d 100% 83% 58% 6% 0% | | <pre></pre> | 0
0
0
0
0 | 5-50
0
2
1
1
0
0 | 50 - 300
2
5
4
1
0 | 300 – 2000
5
5
7
13
6
5 | 2000 - 5000
0
0
0
1
4
7 | 0
0
0
0
0 | 7
12
12
16
10 ³
14 | 0%
17%
33%
81%
40%
14% | 0% 0% 8% 13% 60% 86% | Underpredicte d 100% 83% 58% 6% 0% 0% | | Rodent LD ₅₀ ² | 0
0
0
0
0
0 | 5-50
0
2
1
1
0
0
4 | 50 - 300
2
5
4
1
0
0
12 | 300 – 2000
5
5
7
13
6
5
41 | 2000 - 5000
0
0
1
4
7
12 | 0
0
0
0
0
2
2 | 7
12
12
16
10 ³
14 | 0%
17%
33%
81%
40%
14% | 0% 0% 8% 13% 60% 86% | Underpredicte d 100% 83% 58% 6% 0% 0% | | 107 | Globally Harmonized System of Classification and Labelling of Chemicals with LD ₅₀ in mg/kg (UN 2005). The RC rat-only | |-----|--| | 108 | weight regression excluding substances with specific mechanisms of toxicity is $\log LD_{50}$ (mg/kg) = $\log IC_{50}$ (µg/mL) X 0.357 + | | 109 | 2.194. | | 440 | 1 | - ²Reference rodent LD₅₀ values from Table 4-2 of the BRD. - 110 111 ⁵Carbon tetrachloride excluded because no laboratory attained sufficient toxicity for the calculation of an IC₅₀. - 112 ⁶Methanol excluded because no laboratory attained sufficient toxicity for the calculation of an IC₅₀, - 113 114 ## 1.4 Summary of the Regressions Evaluated **Table 1-4** summarizes the regressions evaluated for accuracy in predicting the GHS acute oral toxicity categories (UN 2005), and the proportion of *in vitro* predicted discordant substances for each GHS toxicity category. Accuracy for both NRU cytotoxicity test methods was the same (27% for the RC, 31% for the RC rat-only) for the regressions evaluated except for the RC rat-only weight regression excluding substances with specific mechanisms of toxicity. For the latter regression, the accuracy of the 3T3 NRU test method was higher than that for the NHK NRU (40% vs. 35%, respectively). The proportion of discordant substances for the 3T3 NRU test method was also the same as that for the NHK NRU test method for the RC (73%) and RC rat-only (69%) regressions. The 3T3 NRU had a lower proportion of discordant substances for the RC rat-only weight regression excluding substances with specific mechanisms of toxicity (60% for the 3T3 NRU vs. 65% for the NHK NRU). Table 1-4 Comparison of Regressions and *In Vitro* NRU Test Methods for Performance in Predicting GHS^a Toxicity Categories | Regression | N ^b | Adjusted R ² | Accuracy | Discordant
Substances ^c | |---|----------------|-------------------------|------------------------|---------------------------------------| | RC –millimole units | 347 | 0.450 ^d | 3T3 – 27%
NHK – 27% | 3T3- 51/70 (73%)
NHK - 52/71 (73%) | | RC rat only –weight units ^e | 282 | 0.322 | 3T3 – 31%
NHK – 31% | 3T3- 48/70 (69%)
NHK - 49/71 (69%) | | RC rat only excluding substances with specific mechanisms of action – weight units ^e | 232 | 0.353 | 3T3 – 40%
NHK – 35% | 3T3- 42/70 (60%)
NHK – 46/71 (65%) | ^aGlobally Harmonized System of Classification and Labelling of Chemicals with LD₅₀ in mg/kg (UN 2005). The highest accuracy for both *in vitro* NRU cytotoxicity test methods was attained when using the RC rat only weight regression excluding substances with specific mechanisms of action. The accuracy for the 3T3 NRU test method was 40%, which was greater than the accuracy of the 3T3 NRU with the RC millimole regression (27%) and with the RC rat-only weight regression (31%). The accuracy for the NHK NRU test method was 35% for the RC ¹³³ bNumber of substances used in regression. ^{134 &}lt;sup>c</sup>Proportion of substances evaluated. dCalculated from RC data (i.e., not reported by Halle [1998]). ^eFrom Table 6-1 of the BRD. 144 rat-only weight regression excluding substances with specific mechanisms of toxicity, 27% 145 with the RC millimole regression, and 31% with the RC rat-only weight regression. 146 147 1.5 Alternate Accuracy Analysis for the RC Millimole Regression 148 149 This analysis of accuracy for the prediction of GHS acute oral toxicity categories (UN 2005) 150 by the 3T3 and NHK NRU test methods was performed using the same IC₅₀ data as used for 151 the analyses above (70 substances for the 3T3 NRU and 71 substances for the NHK NRU). 152 However, the *in vivo* GHS categories for this analysis are based on the reference LD₅₀ values 153 presented in Table 4-2 of the BRD rather than the initial LD₅₀ values used to select the 154 substances for testing (in Table 3-2). The analyses presented in **Table 1-1** used the initial 155 LD₅₀ values to determine the *in vivo* GHS acute oral toxicity categories. 156 157 For the 3T3 NRU test method, the toxicity category was underpredicted for 24 (49%) and 158 overpredicted for 25 (51%) of the 49 discordant substances. For the NHK NRU test method, 159 toxicity was underpredicted for 22 (44%) and overpredicted for 28 (56%) of the 50 160 discordant substances. 162 Table 1-5 Prediction of GHS Toxicity Category¹ by the 3T3 and NHK NRU Test Methods and the RC Millimole Regression Using Reference LD₅₀ Values for *In Vivo* GHS Categories | | KC MIIII | moic ixc | gi cosioni c | ging recter c | ence LD ₅₀ Val | lucs for A | in rivo | OHS Cate | guiles | | |--|----------------------------|-------------------------------------|----------------------------------|------------------------------------|---------------------------------|----------------------------|--|-------------------------------|-------------------------------|--------------------------------| | Reference | | 3T3 | NRU-Predi | icted Toxicity | Category | | Total | Accuracy | Toxicity | Toxicity | | Rodent LD ₅₀ ² | < 5 | 5 – 50 | 50 – 300 | 300 – 2000 | 2000 - 5000 | > 5000 | Total | Accuracy | Overpredicted | Underpredicted | | < 5 | 0 | 2 | 0 | 5 | 0 | 0 | 7 | 0% | 0% | 100% | | 5 –50 | 0 | 2 | 5 | 4 | 1 | 0 | 12 | 17% | 0% | 83% | | 50 – 300 | 0 | 0 | 5 | 7 | 0 | 0 | 12 | 42% | 0% | 58% | | 300 – 2000 | 0 | 1 | 2 | 13 | 0 | 0 | 16 | 81% | 19% | 0% | | 2000 - 5000 | 0 | 0 | 0 | 10 | 0 | 0 | 10^{3} | 0% | 100% | 0% | | > 5000 | 0 | 0 | 0 | 9 | 3 | 1 | 13 ⁴ | 8% | 92% | 0% | | Total | 0 | 5 | 12 | 48 | 4 | 1 | 70 | 30% | 36% | 34% | | Predictivity | 0% | 40% | 42% | 27% | 0% | 100% | | | | | | Category
Underpredicted | 0% | 40% | 42% | 33% | 25% | 0% | | | | | | Category
Overpredicted | 0% | 20% | 17% | 40% | 75% | 0% | | | | | | Reference | | NHK NRU-Predicted Toxicity Category | | | | | | | Toxicity Toxicity | | | Rodent LD ₅₀ | < 5 | 5 50 | 50 200 | 200 2000 | | | i i otai | Total Accuracy | | TT . J J . 4 . J | | | ` 3 | 5 – 50 | 50 - 300 | 300 – 2000 | 2000 - 5000 | > 5000 | | v | Overpredicted | Underpredicted | | < 5 | 0 | 1 | 2 | 4 | 2000 – 5000 0 | > 5000 | 7 | 0% | Overpredicted 0% | 100% | | < 5
5 – 50 | | 1 3 | | | | | | | | • | | | 0 | 1 | 2 | 4 | 0 | 0 | 7 | 0% | 0% | 100% | | 5 – 50 | 0 | 1 3 | 2 5 | 4 3 | 0 | 0 | 7 | 0%
25% | 0% | 100% | | 5 – 50
50 – 300 | 0 0 0 | 1 3 | 2
5
6 | 4
3
5 | 0
1
0 | 0 0 0 | 7
12
12 | 0%
25%
50% | 0%
0%
8% | 100%
75%
42% | | 5 - 50
50 - 300
300 - 2000 | 0
0
0
0 | 1
3
1
1 | 2
5
6
2 | 4
3
5
12 | 0
1
0
1 | 0
0
0
0 | 7
12
12
16 | 0%
25%
50%
75% | 0%
0%
8%
19% | 100%
75%
42%
6% | | 5 - 50
50 - 300
300 - 2000
2000 - 5000 | 0
0
0
0 | 1
3
1
1
0 | 2
5
6
2
0 | 4
3
5
12
10 | 0
1
0
1 | 0
0
0
0 | 7
12
12
16
10 ³ | 0%
25%
50%
75%
0% | 0%
0%
8%
19%
100% | 100%
75%
42%
6%
0% | | 5-50 $50-300$ $300-2000$ $2000-5000$ >5000 | 0
0
0
0
0 | 1
3
1
1
0 | 2
5
6
2
0 | 4
3
5
12
10
7 | 0
1
0
1
0
6 | 0
0
0
0
0 | 7
12
12
16
10 ³
14 | 0%
25%
50%
75%
0% | 0%
0%
8%
19%
100% | 100%
75%
42%
6%
0% | | 5-50
50-300
300-2000
2000-5000
> 5000
Total | 0
0
0
0
0
0 | 1
3
1
1
0
0 | 2
5
6
2
0
1
16 | 4
3
5
12
10
7
41 | 0
1
0
1
0
6
8 | 0
0
0
0
0
0 | 7
12
12
16
10 ³
14 | 0%
25%
50%
75%
0% | 0%
0%
8%
19%
100% | 100%
75%
42%
6%
0% | - ¹GHS-Globally Harmonized System of Classification and Labelling of Chemicals with LD₅₀ in mg/kg (UN 2005). The RC - millimole regression is $\log LD_{50}$ (mmol/kg) = $\log IC_{50}$ (mM) X 0.435 + 0.625. Numbers in table represent number of substances. - ²Reference rodent LD₅₀ values from Table 4-2 of the BRD. - ³Carbon tetrachloride excluded because no laboratory attained sufficient toxicity for the calculation of an IC₅₀. - ⁴Methanol excluded because no laboratory attained sufficient toxicity for the calculation of an IC₅₀.